. M G ] 1 5 O ct 2 00 4 Local Covering Optimality of Lattices : Leech Lattice versus Root Lattice
نویسندگان
چکیده
We show that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. We show that a similar result is false for the root lattice E8. For this we construct a less dense covering lattice whose Delone subdivision has a common refinement with the Delone subdivision of E8. The new lattice yields a sphere covering which is more than 12% less dense than the formerly best known given by the lattice A∗ 8 . Currently, the Leech lattice is the first and only known example of a locally optimal lattice covering having a non-simplicial Delone subdivision. We hereby in particular answer a question of Dickson posed in 1968. By showing that the Leech lattice is rigid our answer is even strongest possible in a sense.
منابع مشابه
N ov 2 00 4 Local Covering Optimality of Lattices : Leech Lattice versus Root Lattice
We show that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. We show that a similar result is false for the root lattice E8. For this we construct a less dense covering lattice whose Delone subdivision has a common refinement with the Delone subdivision of E8. The new lattice yields a sphere covering which is more than 12% less dense than the form...
متن کاملLocal Covering Optimality of Lattices : Leech Lattice versus Root Lattice E 8
The Leech lattice is the exceptional lattice in dimension 24. Soon after its discovery by Leech [9], it was conjectured that it is extremal for several geometric problems in R: the kissing number problem, the sphere packing problem, and the sphere covering problem. In 1979, Odlyzko and Sloane and independently Levenshtein solved the kissing number problem in dimension 24 by showing that the Lee...
متن کاملLattices like the Leech lattice
The Leech lattice has many strange properties, discovered by Conway, Parker, and Sloane. For example, it has covering radius √ 2, and the orbits of points at distance at least √ 2 from all lattice points correspond to the Niemeier lattices other than the Leech lattice. (See Conway and Sloane [6, Chaps. 22-28].) Most of the properties of the Leech lattice follow from the fact that it is the Dynk...
متن کاملN ov 2 00 6 SPHERICAL DESIGNS AND ZETA FUNCTIONS OF LATTICES
We set up a connection between the theory of spherical designs and the question of minima of Epstein’s zeta function. More precisely, we prove that a Euclidean lattice, all layers of which hold a 4-design, achieves a local minimum of the Epstein’s zeta function, at least at any real s > n 2 . We deduce from this a new proof of Sarnak and Strömbergsson’s theorem asserting that the root lattices ...
متن کاملLocal Covering Optimality of the Leech Lattice
We show the highly non–surprising fact that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. This gives a first example of a locally optimal lattice covering having a non–simplicial Delone subdivision. Hereby, we in particular answer a question of Dickson posed in 1968. By showing that the Leech lattice is rigid, our answer is even strongest possib...
متن کامل